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Influence of tether dynamics on forced Kramers escape from a kinetic trap
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When a trapped patrticle is subject to the tension of a massive frictional ghmgtether’), the escape rate
increases due to a lowering of the escape barrier. However, in addition, the escape-rate prefactor is influenced
by the mass and drag contributed by the spring. We solve the full Kramers escape problem for the coupled
system using a technique attributed to Langer. The prefactor in the escape rate is significantly modified by the
spring parameters even in the strong-damping limit. The biophysical relevance of this problem is briefly

discussed.
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[. INTRODUCTION slow enough to be independent of initial conditions, and
In 1940 Kramerg1] solved the problem of the escape rate kT
of a particle trapped in a metastable state by the potential M= O, ©)

V(X) (a “kinetic trap” and subject to thermal noise and a Q
damping force. The equation of motion of the particle waswhich expresses the requirement that the dissipative energy

given by loss per cycle be larger thd@T.
An additional fixed force= applied toM in such a direc-
MX = — ?’MMX— d_V+ 7(t), (1)  tion as to pull it out of the trap may be expected to increase
dX the escape rate. We shall refer to this situation as “forced”

escape. Such a force may be represented by modifying the
potential according t&¥/(X) — Eo(X)=V(X) + FX (the sign has
(p(t)n(t")) = 2yyMkgTa(t - 1), (2)  been chosen so that the particle escapes towards lower values
in order that the system achieve thermal equilibrium at tempf X). This addition changes the equilibrium positions. Thus,

peraturel. Kramers' result for the escape rate can be Writtenthe barrier height

)\fr Qrorced= [V(Xu) - V(Xs)] - F(Xs - Xu)v (6)
Mkr = ;RKre_QlkBT- (3)

with a Gaussian white noise satisfying

is reduced from the unforced case because of the shifts in
equilibrium positions and also because of the explicit force
term, both of which make escape more rapid, as was empha-
Sized originally by Bell[3] and more recently by Evans and
Ritchie[4]. Of course, the frequencies,, are also modified,
because of the change in the equilibrium points, but this

2 ” effect is usually of secondary importance. With these modi-
T2

In Eqg. (3) Rx,=ws/ w, is a ratio of frequencies associated
with the curvature of the potential function at the metastabl
() and unstableu) equilibrium points viaM w3, = V7 .
The factor

A= l(vyf,, +4w2 - y) == fications, the Kramers equatio(®) and(4) remain valid for

2 2 the forced escape.
(4) The purpose of this article is to explore how the forced-
Kramers escape rate is modified when the force is applied by
a massive frictional polymeric spring or “tether” rather than
by a simple linear potential.

This question is motivated by recent biophysical experi-
ments[5,6] in which noncovalent bonds are broken by the
application of an external force. Typically, the for@a the
pico-newton rangeis applied by a soft cantilever coupled to
the bonding region via a polymeric linker. Linker molecules
include DNA, polysaccharides, parts of the muscle protein
_titin [5-8], etc. The force is slowly increased until bond rup-
so that escape igre occurs. In a purely mechanical problem, rupture would

occur when the applied force reaches the maximum slope of

the trapping potential. However, in the presence of a thermal

*Present address: Physics Department, Indian Institute of Tectbath, rupture is a statistical process that can occur well be-
nology Bombay, Powai, Mumbai-400 076, India. fore the mechanical rupture point, provided time is available

M M M

carries the dependence on the particle mdsand the drag
coefficientyy per unit masgalternatively,I'yy=M1vy, is the
net drag coefficient And, Q is the energy barrier for escape.
As a function ofy,,, the factor\, decreases monotonically
from w, at =0 to w?/ yy as yy— o, illustrating how in-
creasing the drag per unit mass reduces the escaplale
terms of the variableM, T"y,, the Kramers escape rate varies
as 1AM for I'y—0 (M fixed) and as 1I'y for I'y—oe
(independent of magsThe derivation of Eq(3) assumes
thatQ/kgT is appreciably greater than unity,
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by an initial spring; at the other end, it is attached via a
terminal spring to a maskl at position X=xy,; which is
subject to the trapping potential. All motion is in one dimen-
sion. For simplicity we take all springs to be equivalent. In
the absence of dissipation, the potential energy of this system

E= S04 -7+ (=X -7+ -+ +(X=x-a)]

+V(X). (7)

When unstretched, the total length of the polyrgieclud-
ing the end springsis Ly=(N+1)a. We have placed the
minimum of the potential at a positioky>L,, so that, as
_ ) _ long asX is in the region of the trapping potential, the poly-
_FIG. 1. The polymeric spring consists of coupled masses, meric spring is always under tension. Thus, the stable
S'“:Iate(i at thz po'”lz"l’XZh’ - XNy dattac:ed at O”de end to a fixed oqyjilibrium position of the trapped particle is displaced left-
wall (x=0) and at the other end to the trapped mdbsat X=X\ 2.4 from the potential minimum to the positidr with
=Xn+1- The tension in the spring shifts the metastable equmbrlumL <L.< X, while the unstableu) equilibrium position is
leftward from X, to Lg and the unstable equilibrium rightward from d'o | s d(f[’ the right f the lib of th tential to th
the top of the escape barrierltq. The spring tension is adjusted by fgti)C:L \(/)vith eL rE L <r(|)_m Ofecc;Er;)e if?( pig (tegolataroe e
rigidly shifting the positionX, of the potential minimum. When E’( 2 ymax uthen thOe stljables.and unstab,le e?quilibrium ?)o,ints
tension is present, the barrier heigbtis given by Eq.(32). 0 0 » T ) 1

P dhis g Y Eas2 merge and disappear, as the polymeric tension overcomes the

. . . . trapping potential. We focus on the situatiofy<Xg'™
for a sufficiently energetic f]uctuatlon to become ava'l‘."‘blewhere there is a stable trap with-L, comparable to the
In this sense, thermally assisted rupture becomes equ'valeﬂwtolecular scal@

to forced escape from a kinetic trap. Rather than a single When the system is at equilibriuteither stable or un-

rupture strength, experiments measure a spectrum of su lo. th :
. ; i rin re all stretch h me amoun
strengths. In an important article, Evans and Rit¢hiehave %Qab 9, the springs are all stretched by the same amount, so

explained how such spectra are to be interpreted. In particu- X=L=(N+1)

lar, they stress the importance of the rate at which the applied

force is ramped up prior to rupture. If the ramping rate isynger these conditions, the polymeric tension is

very rapid(the mechanical limjt then no time is available

for thermal fluctuations and the spectrum of rupture strengths { L— Lo} AL

approaches the mechanical value. If, on the other hand, the F=k(l -a)=ka =Yo—, (9

ramping rate is very slowthe thermal limij, then thermal Lo Lo

fluctuations are important, and esca@apture can occur

with low or zero force. Typical experimeni§,6] probe the

region between these limits. Our calculations will address the

escape rate at fixed force, not the influence of the ramping Yo=ka= ——L,.

rate. (N+1)
Our objective is to explore in the simplest possible con-

text how the mass and drag of the polymeric linker influ- Substituting(8) into (7), we find the energy of the uniformly

ences the escape rate. The model we shall treat, a ongtretched system

dimensional mass-and-spring enthalpic polymer, is 1y

introduced in Sec. Il. In Sec. lll we use a method attributed _tYo,., 2

to Langer[9] to write down an escape rate and show how Eo(X) = 2|_0(X Lo)™+ VIX). 1D

that rate reduces to known results in simple limits. Section

IV uses a variety of examples to illustrate the dependence ofhus, at equilibrium(stable or unstabje —dV/dX|x:Lsu=F

the escape rate on the polymeric properties. Section V Pra=Y[(Lgy—Lo)/Lol, which determined in terms ofX, and

and x,=nl, n=1,... N. (8)

which identifies Young’s modulus of the polymer as

(10

vides brief additional discussion. Lo. Equilibrium is stable (unstabl¢ according to
dPEo/dX?| =(Yo/Lg)+V">0(<0). Thus, at the unstable
Il. MODEL: MECHANICS equilibrium V;<0 with [V{[ > Yo/Lo, S0

The system we consider is a mass-and-spring polymer 0
coupled to a trapping potenti®i(X) which is centered about O0<a= LV <1. (12)
the positionX, (see Fig. 1 The polymer consists dfl point 0l fu
massesn coupled by harmonic springs, each of equilibrium It will from time to time be useful to have in mind the
lengtha. At one end, the polymer is attached to a fixed wall specific model potential
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K , Ko 3 Gaussian random forces satisfying the usual conditions
V(X) = (X =Xo)+ (X =Xp)". (13
2 3 (7m0 7)) = 2MyKeT Sppdlt — t')
The condition that the scale of the potential should be of form n=1,...N+1
order a requireskK;/K,~a. For this potential, it is easy to except that 7us1(t) 7us1(t))
verify that
= 2MypukgTt - 1), (22)
Ley=Xo— i(Kl + ﬁ) which ensures that the system reaches thermal equilibrium at
' 2K, Lo temperaturel [10].
1 Yo\2 Xo—L It will be convenient in what follows to consider the con-
+— \/< Ky + —°> - 4K2Yo( 9 °> , (14  tinuum limit of the polymer, wher&l andk go to infinity and
2K, Lo Lo a, |, andm go to zero in such a way that, L, Y,, and the
from which polymer mass per unit length=m/l remain fixed. Taking

this limit in Egs.(20), we replace the discretely indexed set
)2 {u,(t)} by the continuous function(x,t) with x=nl e [0,L].

Xo*= Lo+ Lo (Kl + A (15) This process leads to a dampgahgitudina) wave equation

4K, Y, Lo

m(dfu+ yau) = YZu, (22)
Finally, we note for future reference that the second deriva- . o
tive of the potential evaluated at the equilibrium points is along with the boundary conditions

V/I
) Y Yo\2 Xo-Lo) VYo u0,t)=0 and M (atzu + ymdu + Mu) o =- YUl

VS,U = 2 = Kl +— ] - 4K2Y0 - . x=L

dX" sy 0 Lo Lo (23)

(16) where
To describe motion near either one of the equilibrium Y Y. EF+Y
states(s, u), it is convenient to introduce variables o= L_O == 0 (24)
0
Up =X~ Nlsy, n=1,...N+1, (17)  and the noise terms have been dropfpikd.

Equations(22) and (23) are a linear system, and it is
straightforward to do the normal-mode analysis. If the nor-
mal mode is writteru(x, t) =h(x)e", then eigenfunctionB(x)

and then to expand the potential energy about equilibrium

— (su 1 s,u
ESU({uh) =BGV + uTESu+ -, (18) satisfying the boundary condition at=0 have the form
Where singx or sinhgx. Corresponding eigenvalues ob&¥+ y\
=3 (Y/ u)g? for the singx (upper sign and sinhgx (lower
1Y, sign), respectively. The boundary conditionatL then se-
ESY = Eg(Ley) = = —(Lgy— L)+ Vey, (19 lects allowedq values(if any). In Sec. Ill we will need the
2L, (unique unstable(i.e., positive regl eigenvaluen, associ-

ated with the unstable equilibrium. It is easy to show that this
eigenvalue can only arise from a solution of the gimhype.
St is useful to define

and E(ZS’“) is the matrix of second derivatives @f) evaluated
at the appropriate equilibrium point. This leads to equation
of motion linearized about equilibrium

MAFu = ~ Mydity = K(2ug = Up) + 71 2=k wizé, wﬁzﬁ, 29
and the dimensionless ratios
MU, = = Myditl, = K(2U, = Uy = Ug) + 7, 2 2
a=Mo Y ang p=k=M g
o LV oy mb

5 In terms of these variables, the eigenvalue obeys

Md; Uy = — Mydiuy — K(2Uy = Unog — Unsd) + 7 N2+, = wizz, 27)
M dFUnie1 = = MY dUnes = K(Unes = Un) = V'Unag + e, with solution
(20) N2 = 5(VV + 402 = ) = 5NV + daBelZ = 7).

(28)

where we have introduced a velocity-dependent damping
force, which may be different for the trapped and polymericin order to satisfy the boundary conditid@3) at x=L, z
masses. The termsy,(t) represent a set of independent must be chosen to solve
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w4z
wi~N@ + vh (2]
To find the eigenvalug,, it is necessary to solv@9) simul-

tanhz= (29)

PHYSICAL REVIEW E70, 031102(2004)

Indeed, for the model potenti&l3), Eq. (16) shows thatR

=1. The polymeric tension, on the other hand, is important.
Tension is adjusted by increasing or decreasing the offget
which sets the lengthls;,, as illustrated by Eq(14). These

taneously with(27) or (28). We shall use these equations aslengths enter the barrier heig{®2) both explicitly and im-

our starting point in Sec. Ill.

Ill. STATISTICAL MECHANICS: ESCAPE RATE

The escape rate for problems of the general typevas
originally worked out by Langef9,12]. As noted by Hanggi

plicitly via their effect onV, and V.. In the normal case,
where the tension does not change significantly between the
stable and unstable equilibrium points, the last terni3@)

can be approximated by a simple produetl.,— L), of the
tension(9) and the displacement between stable and unstable
equilibrium positiongcf. Eq. (6)]. Of course, as the tension

et al. [12], the Langer result is just the multidimensional jncreases towards the instability poifet.g., Eq.(15)], then

generalization of the original Kramers rafé]. Like the

L, andL approach one another, as ¥Wg andV,. Thus, the

Kramers result, it may be viewed as the result of solving theyarrier Q shrinks and, at the same time, the denominator of
rier region and coupling this solution to appropriate bound+he escape rate dramatica[l§3]. In what follows, we shall
ary conditions inside and outside the trap. In the notation ofssyme that we are not near this instability, so @atkgT

our article, Langer’s escape rate can be written
A o QlkgT
r=—Re~s', (30)
2
in strict parallel with the Kramers resuf8), only nowA, is
the eigenvalugl1l] defined by Eqs(28) and(29)

172

detE,® 3D

detE,”

and

1Y,
Q=Ef’ ~E( =V, = Vs+ 5 (L= Lo - (Ls= Lo)’]
0

(32

is the energy difference between the unstable and stable equi-

and «, which is always in the intervall2), is not close to
unity. In this region, the exponentia %™, although nu-
merically important, is not particularly interesting. It is the
factor A, in (30) which incorporates the important interplay
between the maddl and the attached polymer. This factor is
the focus of our further analysis below.

The key issue in finding.(2) is solving Eq.(29) for z. By
using Eq.(28), we rewrite(29) in the convenient form

tanhz o 35)
z D®’
where the denominator is
- 2
D(2)=1-aBz?+ M{ \/<l> +4aBz? - l].
2w, wy wy
(36)

librium configurations. The ratio of determinants can be

evaluated exactlysee the Appendix
Ve + YIL

ne 1/2: w§+w2M 1/2:i{w§+wﬁn}1/2
VI - YIL 2— Wl ol 1-a |

(33

The final result in the continuum limit is

1 s V' +Y/L 1/2 B
r=—WyY+40’-y)| =——| T (34
2O+ A, Y)LVZ‘Y/L (34)

Like the original Kramers resul3), this expression is ex-

pected to fail if the damping’ becomes too small, a limita-

tion we shall discuss further in Sec. V B.

Equation(34) gives the dependence of the escape rate on
the properties of the polymeric link and is our central result.
In what follows, we will explore the implications of this

formula. We begin with a few general remarks. The rd&io

The left side of(35) has the value unity @&=0 and decreases
monotonically towards zero asncreases. It is easy to verify
that dD/dz<0 (for yy,=0), so D(z) decreases smoothly
from its initially positive value of unity atz=0, passes
through a unique zero at sorag and continues to negative
values at large. Thus, the right side af35) increases mono-
tonically from an initial valuea<1, diverges atz=z, and
continues at negative values. It follows tl{86) always has
a unigue solutiorz with 0<z<z,, as illustrated in Fig. 2.
Note that, as long a& is not very small, therz~ 1, unless
7zy<1, in which casez~z, The casey=1vy, is especially
transparent, since35) takes the simple form

tanhz  «
z 1-aB?

It is worth commenting on the scaling of the solutions.
The original variables of Eq$27)«29), oy, o, »,, v, and

(37

defined by Eq.(33) is a straightforward generalization of 1, all have the same units. It follows theat/w, depends on

Rk;- The additional term¥/L=Y,/L, reflect the inclusion of

four dimensionless ratios of these five quantities, which we

the polymeric terms in the second derivatives of the full po-may take, for example, to be, B, y/w,, and yy/w,. The

tential Ex(X), Eg. (11). Note thatR is mass independent.

Furthermore, the denominator of E&3) is necessarily posi-

dependence of the escape rate on these four variables is in
general nonsimple, as it is necessary to solve(B§). for z

tive by virtue of Eq.(12). Thus, in discussing the behavior of =z(«, B, y/ w,, yu! @,) and then to substitute this ini@8).

the escape rate, variations Bfare not normally important.

Only in special cases is there a little simplification. One ex-
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C. Pure-polymer limit, M=0 (yM fixed)

i tanhz/z In this limit, the trapped particle and its associated damp-
i ing I'y, both disappear; the end of the polymer is directly
i trapped but has no special mass of its own. The fact ghat

i and 1liw, both vanish asM —0 (|V{] fixed) causeq35) to

i simplify to tanhz=«z with solutionz(«). The result is

N b =

)\ﬁM:O) = %(\J'}/Z'FTW - ’Y)a (40)

which is similar in form to the Kramers resi#), except that
the polymeric drag replaces,,. In particular, at smalla
(weaky) z(a)=1/a, sO

o/D(z)

FIG. 2. Schematic graph of the left and right sides of &%).
Becauser< 1 andD(z) vanishes at=z, there is a unique positive \(M=0) _ 1 LI)\? ‘a Vil LT 1)
solutionz=z* in the interval 0<z<z,. + 2 Lu alu Lu/’
ample is that of Eq(37), which is independent of so that whereFE,@y is the polymeric drag per unit Iength. Equation
z=2(a, ) and the full y dependence can be read off from (41) looks like (4) except that the particle mabsis replaced
Eq. (28). by the polymeric masku, the particle drad’y is replaced
Certain important limiting results emerge immediately PY the net polymeric dragl’, and an extra factox appears

from the above framework, which we now discuss. multiplying Lx in the denominator of théVj| term, thus
enhancing the effective barrier frequency. The physical rea-

son for this is that, for smalY, only a small fraction of the

overall polymer contributes to the inertial mass associated
This corresponds to setting the spring constértts zero, ~ With the binding site.

so that the polymer has no influence on the escape problem.

A. Original Kramers limit, Yy=Y=0 (@=0)

Clearly, the original Kramers resu(3) and (4) must re- IV. RESULTS
emerge. TheR factors are simple, sinceuf,,:o, so R
— wgl w,=Ry,. The solution fol, is a bit more complicated, With these limits now under control, we address the cen-

since ’, also vanishes but in such a way that the productral issue: How does the polymer dynamics affect the Kram-
w’Z% remains finite. The key is to notice that, under theseers escape? In this section we explore the effect of polymeric
conditions, the solution occurs fa=1, so tante=1, and damping and mass on the escape rate on the basis of the
(35) reduces to the conditioB(z)=0. A few lines of algebra general result$28) and(35). Our expectations here are not

show that this condition is equivalent to transparent, since increasing dr@gich might be expected
to slow escapealways comes with increasing noiéghich
\/ F A2 — = V/ + 40’ — 38 m|g_ht be expected to speed |t)uﬂngc§use qf Eq.21).. E_x—
4 W= wo M (38 perience with the forced-Kramers linfiind with the original
so thath, — N, reproducing(4). Kramers problemdoes lead us to expect a decrease of es-

cape rate as overall damping is increased.
In this discussion, we focus on the net drag coefficients
I'y and LT for the particle and the polymer, respectively. A
Taking the mass of the polymer to zero also eliminates th€entral question is the relative effectiveness of these two
polymeric drag; however, the tension of the polymer re-sources of frictional drag. In this connection it is convenient
mains, thus converting the original potentid(X) to the to define a nominal total drag
modified potentialEy(X), Eq. (11). When this potential is

B. “Forced”-Kramers limit, u=0 (y fixed)

treated by the Kramers formula, the result is To=Tu+LI, (42)
1 VI+YIL [Y? with 'y, =(1-p)['y and LI =ply, (43
Iorced= 4_(\"7§/| +4(1- a)wﬁ - 7M)|:i—:| QleT, . . .
™ Vil - YiL so that the dimensionless paramgid0< p<1) determines

(39 what proportion of the total belongs to the polymer. By vary-
ing p, we can pass smoothly between the forced-Kramers
which differs from(3) and(4) only by the appearance of the case(p=0, Sec. Il B, where all the drag attaches to the
additional second-derivative contributiondL in both A, massM, and the opposite extremps=1, where all the drag
and theR factor. To show that the same result emerges fronbelongs to the polymer. When we need to express drag in
the u— 0 limit of Eq. (35) is not hard. The key is to notice dimensionless units, we shall write
that in this limit the solution forz occurs atz<1, so that

tanhz/z~=1, and(35) reduces td(z) =a. The analog o{38) _To _ Ty _
leads directly ta39). 9= Vo, o, —\W or (whenM =0)
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0.3 . ; ;
" o z(e)

J—
N

D

{
u

0.6

A (LAY,

(1-a)/g

(:+ 04 az2(0)/g
/ 05 1
02 (1-oy/g’ o z(a/g’
p=0
L | L 1 L | L
" : — 0 ; —
g=T /M [Vg) g'=T/(uL|V,D
FIG. 3. The escape-rate prefactar/ w, as function ofg andp FIG. 4. The escape-rate prefactor as a functiog’dfEq. (44)]

for ©=0 (vanishing polymeric magsand a=1/2. g measures the andp for M=0 (vanishing particle magsand a=1/2. Theplot is
overall drag[see Eqs(42) and(44)], while p is the fraction of the  similar to Fig. 3 except that the escape rateand the overall drag
overall drag due to the polymégEq. (43)]. At strong damping the T'g have been made dimensionless by factors which do not involve
escape rate falls off as ¢/ The dependence of certain asymptotic M. At largeg’ the escape rate falls off asd// The dependence of

limits on « is indicated on the plot. certain asymptotic limits om is indicated in the plot.
) — Ty erally speaking, what these calculations show is that poly-
g'=gVB= —\m (44 meric friction is an important contributor to the total drag.
V u

Increasing the net drag always decreases the escape rate;
however, drag exerted by the polymer is always less effective
A. Distribution of drag between the trapped massM than the same net drag applied directlyNb(see more in

and the polymer Sec. IV O.

A simple starting point is the case—0, but now (in
contrast to Sec. lll Bwith I'=yu fixed, so that the poly- B. Effect of the mass ratio
meric mass vanishes but its dissipation persists and can aug-

ol
ment the effect of the direct draigy. This case will let us Next, we explore the effect of the mass ratf@
explore, in a particularly simple form the relative effects of =#L/M. To separate this from drag effects, we start with the

frictional drag associated with the masand frictional drag ~ ¢@s€y=0 (LI'=0), so that all the drag attaches to the trapped
associated with the polymer. In terms of the variablesT@ssM. Figure Ga) shows that increasing the polymeric

(42)~(44), Egs.(28) and(35) for »— 0 take the form mass at fixed drag always decreases the escape rate. Based
on the Kramers problem, we expect mass effects to disappear

Ay _ izz(a £.9) (45) at strongzdamping, and, indeed, a short calculation gives
. pg T =(1-a)w;/ ym=(1-a)|V,|ITy, asyy— o for all values of
. . . . BL. A nonzero polymeric friction does not change these
wherez(a,p,g) is the unique positive solution of qualitative trends. Figure(B) shows the escape rate as a
tanhz o function of damping wheny=y, (I'y=BLI"). We see the
= Z (a2 (46) same decrease of escape rateuéisincreases. In this case,
1-(1-p)— - <_> the strong damping limit i3, = @Bz%(a)w?/ yy [z(@) solves
P P9 tanhz=az] as yy,— . Note that, unlike the previous case,

At p=0, the result reduces to E¢39) with yy/w,=g, SO
A/ w, goes toy1-a and (1-a)/g at g=0 andg— o, re-
spectively. Atp=1, we find\,/w,=\(1-a) andaz’(a)/g at
g=0 andg— o, respectively, where(«) solves tanlz=az
Figure 3 plots results for a range of valuesgoéndp at «
=1/2 (other a values lead to qualitatively similar resylts
Note how increasing the overall frictiamlowers the escape
rate, just as for the original Kramers probleB). At fixed
overall dragg the escape rate is always increased by increas-
ing p, i.e., by shifting drag from the mad4 to the polymer.
At strong damping the escape rate falls off ag.1The co-

o .
T

efficient of the 1§ behavior decreases monotonically from o 2 4 g 6 8
az’(a) atp=1 to (1-a) at p=0.
Results similar to the above but fof=0, x# 0 and for FIG. 5. Escape-rate prefactor as a functiongo&ind p for M

M=ulL (B=1) are shown in Figs. 4 and 5, respectively. Gen-=Lu (8=1) anda=1/2.
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0.8 T T 7 T T 1 T 1 T T
— (1-o” a | =
( ) 0.8 /a 03 -
< 1
@;; 06k (lfoc)/(xzz(u)_
[ |
0.4} \—
02+ i
% 02 04 06 0.8 1
P
08 — — FIG. 7. Effective drag in the strong-damping limit for various
/<I—oc)”2 ] values ofa. In this limit, the escape-rate prefactor always goes
(b) to zero with increasing total drag aslly[Eq. (48)] and the mass

7 terms drop out of the Langevin equatiqi2®). I'e¢(p) measures the
effective drag which an isolated madt would need to have in
order to achieve the same escape rate as it does in the presence of
the polymer. The decrease I6f;; asp increases reflects the reduced
effectiveness of the polymeric drag compared to the particle drag.
At «=0 the polymer decouples completely from the escape, so
Fetr=I'w=(1-p)To.

2(1-a)lg

o2 i 9 8 10 =z(«, p) in the hyperbolic tangent equation is a functionof
vio ST /MVD =2 andp but independent of the mass rafo Furthermore
FIG. 6. Escape rate prefactar,/w, as a function ofg for « _ w2 _aZ(a,p)|Vy
=1/2 andseveral different values g8™*=Lu/M to illustrate the A= 01,322(04/3)7 - pro_' (48)

effect of increasing polymeric mass. Péaf treats the case of van-

ishing polymeric dragy=0, while in part(b) we have takeny  The result that the escape rate is independent of the masses at

=yM [see Eq(37)]. Note that in all cases increasing the polymeric strong damping is not unexpected, since the inertial terms in

mass decreases the escape rate. The dependence of certhie Langevin equation@0) drop out in this limit.

asymptotic limits ona is indicated in the plots. We return now to the issue of self-consistency. Recall that
z(>0) can be small but is bounded above bywlThus,\,

there is here an explicit dependence Bnin the strong- can be made arbitrarily small, provided only that O (i.e.,

damping limit, which may be interpreted as a dependence dhat y+ 0). But, asp— 0, z becomes small, the left side of

the effective friction on the mass ratisee below. the hyperbolic tangent equation approaches unity, and we
S find az?/p=(1-a) or A, (p=0)=(1-a)|V]|/T, as we have
C. Strong-damping limit already found in Sec. IV A. Thus, the=0 limit is not sin-

We conclude this section with a general discussion ofular, and\, can always be made small by takilg large.
strong damping, a situation which occurs commonly in bio- Comparison with the forced-Kramers limit=0 suggests
physical applications and which we shall touch upon again irthat we write the strong-damping resgd7) in terms of an
Sec. VC. We have seen that strong damping means slogffective drag
escape, as in the original Kramers problem. In this limit the

A2 terms in both Eqs(27) and(29) may be dropped, and it is Ay = L")'V“' (49)
easy to show generally that Cesfle,p)
A, o tanhz o whereT ' is the drag coefficient that would have to be as-
— = apZ— with = . (47)  signed to the masil to simulate the effect of the polymeric
“u Y Z - M g2 drag in the strong-damping limit. Comparing E@48) and
Y (49) leads to the evaluation
This is self-consistent, provided that/w,<y/w, in (27) Tery (L—a)p
and A,/ w,<1 in (29). Both these conditions are satisfied F_o:m' (50

wheneveraBz’< y/ w,. We show below that this condition
can always be satisfied provided the total digg=T"y This function, which is independent of the mass ragiois
+LI" is sufficiently large; thus, Eq47) captures the entire plotted in Fig. 7 for a selection af values. The fact that this
strong-damping limit. function decreases from its limiting value of unity @0

It is convenient to rewrite Eq47) in terms of thep,I'y  indicates that the polymeric drag coefficidrit is less effec-
variables. Thus(yy/yaB=a(l'y/LT)=a(l-p)/p, SO z tive thanI'y,, as might be expected from the fact that, in the
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unstable mode, the polymeric units move with lower velocityrange, asyy—0, requires a different approach, usually
than the particleM. For example, a short calculation for based on the notion of energgr action diffusion [15].

small p shows thatl'g(p)=1"o(1-20/3+- )=y +LI"/3, It seems safe to state that a similar breakdown of the
so that the effective drag coefficient fbt is increased by the Langer derivatiorf9] for the many-particle case studied here
polymeric attachment, as expected, but not by the fullshould occur at weak coupling. And, indeed, Es).presum-
amountLT". At larger values op the curves depart from this ably provides a first estimate as to where this breakdown
simple linear relation, reflecting a more complex dependenceiay be expected to occur. Although it would be interesting
on the ratiol'y,/LI". As a—0, the function[s(p) ap- to explore this region more fully, such a study is beyond the
proached o(1-p)=T"y,. This is not surprising, since=0is  scope of the present work. Nevertheless, it is interesting to
the Kramers limit(Sec. 11l A), where the polymer decouples note that the conclusion that the escape rate goes to zero at

from the particle, so polymeric drag is completely ineffec-zero damping most likely does not hold in general for the
tive. many-particle system. The reason is that the polymeric de-

grees of freedom all have energies of orldgf. Thus, for a
polymer of appreciable length, the average energy of the
system is many time&gT, whereas, typically, the barrier

A. Comparison to previous theoretical work heightQ is only a fewkgT. Thus, there is plenty of energy
available for the system to escape over the barrier even when
no noise(and no dissipationis present. In this limit, it would
ggem, escape becomes a problentnionlineaj dynamics.

V. DISCUSSION AND CONCLUSIONS

Multibody escape problems with a flavor similar to ours
have been addressed by Sebastian and Pyfldjr These
authors calculated the rate of thermally assisted breakage
a bond in the middle of a chain by applying multidimen- _ ) S
sional transition state theory. Transition state the@igT) C. Biophysical applicability of the model
[12] starts from the equilibrium partition function and calcu-  Although motivated by the biophysical experiments refer-
lates the overall outflux from the trap, neglecting recrossingnced in Sec. |, the one-dimensional model proposed here is
events back into the trap. It cannot take into account the significant simplification. Real polymeric linkers have sig-
effect of friction on the dynamics near the trap, so the role ofificant short-range interactions, which are neglected here.
friction (and noisgis seen only in setting up the equilibrium Furthermore, at sufficiently low tensiors, Eq. (9), even
ensemble. Thus, TST typically overestimates the rate, as igithout short-range interaction, a long polymer adopts a
well documented in the literatuf@2]. The Kramers formal-  random-coil configuration rather than being linear, as as-
ism, on the other hand, computes the net outward flux acrossumed here. The model proposed here could only apply in
the barrier from the true nonequlibrium phase-space probthe so-called “overstretched” regime, when the tension is
ability density obtained by solving the Fokker-Planck equa-strong enough to overcome entropic effects and force the
tion of the corresponding Langevin equation. In Réf4],  polymer into a linear configuration. Luckily, this is some-
the authors try to put back the missing effect of friction by times the case in experimer(s,7,8. Even in this situation
cooking up a special harmonic bath, because it is known thahere would be some corrections due to the out-of-line mo-
the Kramers’ result can be obtained from TST for a singletion, although these may be expected to be small at high
particle if the particle is quadratically coupled to a harmonicenough tension.
bath. Then, the simple Kramers formula emerges in some Another problem is the form of the drag coefficients. We
special limit. The applicability of such a scheme to the multi-have assumed that each “bead” has its own independent drag
body case has not been proved. In Kramers-Langer formaforce. This assumption will break down when there are sig-
ism, which we use, no sucid hocmodeling is required to njficant hydrodynamic interactions between beads. Even in

incorporate the effect of friction. the strictly linear situation envisaged here, the friction for
individual spherical monomergor examplg will not typi-
B. Weak-damping limit cally translate additively into the frictional coefficiehitper

unit length of the polymer, since the flow pattern around

The Kramers calculation in the form used here fails in thej,jyiqual beads is affected by close spacing, unless the
weak-damping limit, as was noted in the original artiglé

h for thie fail is that in the derivati ._beads are widely separated. These cooperative effects could
The reason for this failure is that, in the derivation, it ISy |5rge for coiled configurations; however, for the linear

assumed that the distribution in the barrier region can be ﬁI:ase treated here, we expect them to be quantitative rather
to a stationary, quasiequilibrium distribution inside the We"'}han qualitative. ’

When a weakly damped particle undergoes a complete 0sCil- o hshot is that we expect our calculations should be
capable of giving a good account of qualitative issues for

lation inside the well and returns to the barrier region with-
out appreciable energy loss, then this assumption breaks e riments in which the tension is strong enough to pull the
QOwn becau_se thgre are memory effects which cannot brl?OWmer into an extended configuration.
ignored. Trajectories which suffer energy loss greater thal

ksT do not return to the barrier region. Thus, the criterion
that these memory effects can be neglected is simply that the
energy loss in one cycle of the undamped mechanical motion The objective of this section is to get an idea of represen-
should be greater thakgT, which leads to the estimate Eq. tative values which the parameters in our theory might take
(5) for the range of validity. To describe behavior outside thisin a typical experimental system. We imagine a strand of

D. Biophysical experiments
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DNA of length Lo=1 um with one end attached to a fixed meric units, so that they only enter the problem as the agent
support and the other end in a kinetic trap. For simplicity wefor the applied tensiofr. The comparison is, then, between
shall assume that the particle which feels the trapping poterthe correct prefacto(40) and the forced-Kramers approxi-
tial is not significantly different in mass and drag from the mation(4). The drag parts of these expressions are the same,
DNA monomers, so we are in the regitve=0 and Eq(40)  since yy=y~3X10* s is the drag per unit mass. The
applies. Each base pair has a mass of 660 daidpsso, difference comes in the trap term. The relevant comparison
using a linear density of one base pair per 0.34 nmhere is

(~1900 D/nm, we calculate a mass density~3

X 10 kg/m. In order for our one-dimensional model to w'Z _ w2 MV
have any hope of being applicalileee Sec. V § it is nec- w? a2w5 - uYo '
essary that the applied tension suffice to stretch out the ther-

mal coil of the relaxed polymer into a nearly linear configu- where we have used the smallapproximation. This ratio
ration. Experimentally, this occurs fér~ 1 pN [16], which  works out for the DNA problem to be in the range 008r

is consistent with the theoretical criterion thae>kgT/§, a nanometer trgpto 3 (for an angstrom trap it enters the
~8X 10N [17], where &~53 nm is the persistence prefactor\, directly in the strong-damping limit or as a
length of DNA[18]. At the other extreme, the onset of DNA square root in the weak-damping limit. The upshot is that, for
overstretching is observed &t~ 60 pN [7,8]. In this win-  a nanometer trap, the forced-Kramers estimate of the escape
dow, 1 pN<F <60 pN, the stretching of the DNA backbone rate is up to 30 times too fast in the strong-damping limit,
is relatively small, sincé&/,~900 pN[7], giving a fractional although this discrepancy rapidly becomes smaller as the
extension of no more than 7% by E®). trap becomes stiffe(Note, also, that the fact that, < w,

To decide whether we are in the overdamped or the unin this case means that/zw,> yy/w,, so the escape-rate
derdamped regime, we need to estimate the parameters ggrefactor is further towards the strong-damping regime than
pearing in Eq(40). The largest uncertainty comes from the the forced-Kramers approximation would indicatat first
factor [V{|. We estimatgV;, | ~AV/(Ax)?, whereAV is the  sight, it may seem accidental that the combination of factors
depth of the trap andx is a characteristic length scale as- on the right side of Eq(52) is so close to unity, i.e., that the
sociated with the trapping potential. Takidy ~25kgT and  forced-Kramers approximation is so good. To understand
Ax between an angstrom and a nanometer pdfsin the  why, we note thaM/u is a length of order the monomer
range 0.1-10 N/m, which givea~10%-107 from the diameter;|V"| is comparable td&; in Eqg. (13); and, Y,=ka
definition (12). Finally, we estimate the drag d3~3wy  from Eq.(9). Thus, ifa is comparable to the monomer size,
~1072 Ns/n?. The fact thatx< 1 means that we can use Eq. we find thatw?z?/ w?~K/k, i.e., the ratio of the trap stiff-
(41) in place of Eq.(40). The ratio which determines the ness to the stiffness of the polymeric links. If these two stiff-
degree of overdamping is nesses are comparable, which is not unusual, the forced-

Kramers approximation is never too b@at least, as long as

(52)

v ay 17T \/70 a is smal).
20,7a) 2w, Em ' (51) So far, all our estimates have been for DNA, which is a
. g relatively light biopolymer. How do these numbers change
which works out to be in the range O(®r the angstrom- for heavier polymers? The key rat{at smalla) is ay/w,
range trap up to 30(for the nanometer-range trgpndicat-  =(T'/|V{|)y/(Yo/ 1). Only the square-root factor is dependent
ing moderate to strong damping. The corresponding escapen polymer properties. It turns out that this factor is only
rate prefactors range from,/27m~2x10f-7x10"st,  weakly dependent on the polymer mass density. The reason
with the lower value for the nanometer-scale trap. To estiis that Yo~ 7R?Y®?), where Y®P) is the three-dimensional
mate the full escape rate, it is necessary to provide values fanodulus andR is the polymeric radiug18]. Furthermore,
the remaining factors in Eq(30). Taking R~1 and Q u~ mR%p, wherep is the density of the bulk polymeric ma-
~20kgT gives an escape rate~0.4—1500 s, with the terial. It follows thatYy/u~ Y®P)/p. For many biopolymers
lower value for the nanometer-scale trap. These values en®=(0.5-1.5x10° N/m? and p~ pyae» and the ratio
compass the range of typical bond-rupture experimgiis  (Y,/u) changes by less than a factor of 10 for polymers
Of course, these numbers are very sensitive to the well deptfanging in linear mass density by a factor of 108]. There
Q. Every decrease ofkgT in well depth corresponds to an seems to be a weak trend for heavier polymers to have larger
increase in escape rate by a factor of 150. In this connectiory®®) | putting them further toward the strong-damping re-
we note that applied tension can decrease the bare well depgfime.
significantly, Eqs(6) and(32), as emphasized by Evans and ~ We are not aware of any extant experiments to which our
Ritchie [4]: F(Ls—L,)~1.5-1%gT for a tension of F  model might be directly applied. Nevertheless, there are ex-
~60 pN and a trap size dt.,~Ly ~10°-~10° m, respec- periments on the muscle protein tifif] and polysaccharides
tively. [6] to which our considerations apply, albeit in somewhat
It is instructive to compare some of these numbers withaltered form. We take the example of tifi5], which consists
what we would have found had we approximated the DNAof a linear sequence of immunoglobulity) domains con-
problem above as a simple forced-Kramers escape,(Bygs. nected by deformable proline-, glutamate-, valine-, and
(6), and(39), treating the terminal polymeric unit as the masslysine-rich (PEVK) segments. The Ig domains are globular;
M but neglecting the mass and drag of the remaining polybut, under sufficient tension they unfold into an over-
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stretched configuration by breaking internal hydrogen bond<f freedom act as a kind of structured bath, which interacts
The PEVK segments act like flexible springs. As the overallwith and modifies the effects of the unstructured thermal
tension applied to the polymer is increased beyond the urbath. The Langef9] formalism serves as an elegant tool for
folding threshold, the Ig domains unfold one by one, produc-capturing these effects, provided that the damping is not too
ing a sawtooth shape in the observed force-extension curveveak.

If the applied force were held constdgi20], then each indi-

vidual unfolding event would be similar to our model, except ACKNOWLEDGMENTS
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of the mass are likely irrelevant, since the system is probably

in an overdamped regime. Nevertheless, as we have shown
herein, there can still be significant effects on the escape-rate
prefactor arising from drag forces away from the breakage(

APPENDIX: CALCULATION OF RN EQ. (31)

The (N+1) X (N+1)-dimensional matrice€,*" in Eq.
31) have the tridiagonal structure

site.
1-C, -1 O 0
E. Conclusions -1 2 -1 0 :
We have shown that the forced-Kramers escape rate can 0 -2 -1, (A1)
be significantly altered by the properties of the polymeric : 0 -1 -1
spring. In general, coupling of the dynamical degrees of free- 0 0 -1 2

dom of the polymer to those of the escaping particle leads to ) )

changes in the prefactor of the escape (dte effective at- Where Cs,=-V¢ /k and V¢, was, e.g., given for the cubic

tempt ratg which cannot be captured by simply assigning anpotential in Eq.(16). The determinant of this matrix can be

effective mass and drag to the escaping particle. The reas@yaluated directly

for this is that the dynamics, itself, controls how much of the detE, 5 = 1 - Co (N +1). (A2)

mass and drag of the polymer should be associated with the '

escape. In the strong-damping limit, the mass terms disagh this evaluation, we have used the fact that the determinant

pear from the Langevin equations and an effective drag canf the N X N-dimensional matrix which arises by striking out

be defined. However, even in this case the effective drag ighe first row and column of EqA1) is equal to(N+1). This

not simply additive]see Eq(50) and Fig. 7. Increasing the matrix occurs in the treatment of phonons in a harmonic

polymeric mass always decreases the escape rate, as daedsin of N masses with the ends held fixed.

increasing the overall drag; however, a shift of drag from the The matrixE, can at most have one negative eigenvalue,

trapped particle to the polymer increases the escape rate. i.e., one unstable mode. The condition for the existence of
Although we have treated the case of a one-dimensionaiuch a mode is that d&, < 0. This can only be satisfied at

polymeric spring, it is clear that similar effects will occur the unstable equilibriuntV;;<0), when 1<(N+1)C,. This

whenever other dynamical degrees of freedom are coupled wondition is equivalent by virtue of Eq$10) and (24) to

a simple trap.(For example, one might consider a trap «a<1, Eq.(12), which in turn is related to the existence of

coupled to a fluctuating membrap&he additional degrees the unstable continuum mode discussed after(BS).
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