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When a trapped particle is subject to the tension of a massive frictional spring(the “tether”), the escape rate
increases due to a lowering of the escape barrier. However, in addition, the escape-rate prefactor is influenced
by the mass and drag contributed by the spring. We solve the full Kramers escape problem for the coupled
system using a technique attributed to Langer. The prefactor in the escape rate is significantly modified by the
spring parameters even in the strong-damping limit. The biophysical relevance of this problem is briefly
discussed.
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I. INTRODUCTION

In 1940 Kramers[1] solved the problem of the escape rate
of a particle trapped in a metastable state by the potential
VsXd (a “kinetic trap”) and subject to thermal noise and a
damping force. The equation of motion of the particle was
given by

MẌ = − gMMẊ −
dV

dX
+ hstd, s1d

with a Gaussian white noise satisfying

khstdhst8dl = 2gMMkBTdst − t8d, s2d

in order that the system achieve thermal equilibrium at tem-
peratureT. Kramers’ result for the escape rate can be written

rKr =
l+

Kr

2p
RKre

−Q/kBT. s3d

In Eq. (3) RKr =vs/vu is a ratio of frequencies associated
with the curvature of the potential function at the metastable
ssd and unstablesud equilibrium points viaMvs,u

2 ; ±Vs,u9 .
The factor

l+
Kr =

1

2
sÎgM

2 + 4vu
2 − gMd =

1

2
FÎSGM

M
D2

+ 4
uVu9u
M

−
GM

M
G ,

s4d

carries the dependence on the particle massM and the drag
coefficientgM per unit mass(alternatively,GM ;MgM is the
net drag coefficient). And, Q is the energy barrier for escape.
As a function ofgM, the factorl+ decreases monotonically
from vu at gM =0 to vu

2/gM as gM→`, illustrating how in-
creasing the drag per unit mass reduces the escape rate[2]. In
terms of the variablesM, GM, the Kramers escape rate varies
as 1/ÎM for GM→0 (M fixed) and as 1/GM for GM→`
(independent of mass). The derivation of Eq.(3) assumes
thatQ/kBT is appreciably greater than unity, so that escape is

slow enough to be independent of initial conditions, and

gM . vs
kBT

Q
, s5d

which expresses the requirement that the dissipative energy
loss per cycle be larger thankBT.

An additional fixed forceF applied toM in such a direc-
tion as to pull it out of the trap may be expected to increase
the escape rate. We shall refer to this situation as “forced”
escape. Such a force may be represented by modifying the
potential according toVsXd→E0sXd=VsXd+FX (the sign has
been chosen so that the particle escapes towards lower values
of X). This addition changes the equilibrium positions. Thus,
the barrier height

Qforced= fVsXud − VsXsdg − FsXs − Xud, s6d

is reduced from the unforced case because of the shifts in
equilibrium positions and also because of the explicit force
term, both of which make escape more rapid, as was empha-
sized originally by Bell[3] and more recently by Evans and
Ritchie[4]. Of course, the frequenciesvs,u are also modified,
because of the change in the equilibrium points, but this
effect is usually of secondary importance. With these modi-
fications, the Kramers equations(3) and(4) remain valid for
the forced escape.

The purpose of this article is to explore how the forced-
Kramers escape rate is modified when the force is applied by
a massive frictional polymeric spring or “tether” rather than
by a simple linear potential.

This question is motivated by recent biophysical experi-
ments[5,6] in which noncovalent bonds are broken by the
application of an external force. Typically, the force(in the
pico-newton range) is applied by a soft cantilever coupled to
the bonding region via a polymeric linker. Linker molecules
include DNA, polysaccharides, parts of the muscle protein
titin [5–8], etc. The force is slowly increased until bond rup-
ture occurs. In a purely mechanical problem, rupture would
occur when the applied force reaches the maximum slope of
the trapping potential. However, in the presence of a thermal
bath, rupture is a statistical process that can occur well be-
fore the mechanical rupture point, provided time is available
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for a sufficiently energetic fluctuation to become available.
In this sense, thermally assisted rupture becomes equivalent
to forced escape from a kinetic trap. Rather than a single
rupture strength, experiments measure a spectrum of such
strengths. In an important article, Evans and Ritchie[4] have
explained how such spectra are to be interpreted. In particu-
lar, they stress the importance of the rate at which the applied
force is ramped up prior to rupture. If the ramping rate is
very rapid(the mechanical limit), then no time is available
for thermal fluctuations and the spectrum of rupture strengths
approaches the mechanical value. If, on the other hand, the
ramping rate is very slow(the thermal limit), then thermal
fluctuations are important, and escape(rupture) can occur
with low or zero force. Typical experiments[5,6] probe the
region between these limits. Our calculations will address the
escape rate at fixed force, not the influence of the ramping
rate.

Our objective is to explore in the simplest possible con-
text how the mass and drag of the polymeric linker influ-
ences the escape rate. The model we shall treat, a one-
dimensional mass-and-spring enthalpic polymer, is
introduced in Sec. II. In Sec. III we use a method attributed
to Langer[9] to write down an escape rate and show how
that rate reduces to known results in simple limits. Section
IV uses a variety of examples to illustrate the dependence of
the escape rate on the polymeric properties. Section V pro-
vides brief additional discussion.

II. MODEL: MECHANICS

The system we consider is a mass-and-spring polymer
coupled to a trapping potentialVsXd which is centered about
the positionX0 (see Fig. 1). The polymer consists ofN point
massesm coupled by harmonic springs, each of equilibrium
lengtha. At one end, the polymer is attached to a fixed wall

by an initial spring; at the other end, it is attached via a
terminal spring to a massM at positionX;xN+1 which is
subject to the trapping potential. All motion is in one dimen-
sion. For simplicity we take all springs to be equivalent. In
the absence of dissipation, the potential energy of this system
is

E =
k

2
fsx1 − ad2 + fsx2 − x1 − ad2 + ¯ + sX − xN − ad2g

+ VsXd. s7d

When unstretched, the total length of the polymer(includ-
ing the end springs) is L0=sN+1da. We have placed the
minimum of the potential at a positionX0.L0, so that, as
long asX is in the region of the trapping potential, the poly-
meric spring is always under tension. Thus, the stablessd
equilibrium position of the trapped particle is displaced left-
ward from the potential minimum to the positionLs with
L0,Ls,X0, while the unstablesud equilibrium position is
displaced to the right from the lip of the potential to the
position Lu with L0,Lu,Ls. Of course, ifX0 is too large,
X0.X0

max, then the stable and unstable equilibrium points
merge and disappear, as the polymeric tension overcomes the
trapping potential. We focus on the situationX0,X0

max,
where there is a stable trap withLs−Lu comparable to the
molecular scalea.

When the system is at equilibrium(either stable or un-
stable), the springs are all stretched by the same amount, so

X = L ; sN + 1dl and xn = nl, n = 1, . . . ,N. s8d

Under these conditions, the polymeric tension is

F = ksl − ad = kaFL − L0

L0
G = Y0

DL

L0
, s9d

which identifies Young’s modulus of the polymer as

Y0 = ka=
k

sN + 1d
L0. s10d

Substituting(8) into (7), we find the energy of the uniformly
stretched system

E0sXd =
1

2

Y0

L0
sX − L0d2 + VsXd. s11d

Thus, at equilibrium(stable or unstable) u−dV/dXuX=Ls,u
=F

=Y0fsLs,u−L0d /L0g, which determinesL in terms ofX0 and
L0. Equilibrium is stable (unstable) according to
ud2E0/dX2uL=sY0/L0d+V9.0s,0d. Thus, at the unstable
equilibrium Vu9,0 with uVu9u.Y0/L0, so

0 , a ;
Y0

L0uVu9u
, 1. s12d

It will from time to time be useful to have in mind the
specific model potential

FIG. 1. The polymeric spring consists ofN coupled masses,
situated at the pointsx1,x2, . . .xN, attached at one end to a fixed
wall sx=0d and at the other end to the trapped massM at x=X
;xN+1. The tension in the spring shifts the metastable equilibrium
leftward fromX0 to Ls and the unstable equilibrium rightward from
the top of the escape barrier toLu. The spring tension is adjusted by
rigidly shifting the positionX0 of the potential minimum. When
tension is present, the barrier heightQ is given by Eq.(32).
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VsXd =
K1

2
sX − X0d2 +

K2

3
sX − X0d3. s13d

The condition that the scale of the potential should be of
order a requiresK1/K2,a. For this potential, it is easy to
verify that

Ls,u = X0 −
1

2K2
SK1 +

Y0

L0
D

±
1

2K2
ÎSK1 +

Y0

L0
D2

− 4K2Y0SX0 − L0

L0
D , s14d

from which

X0
max= L0 +

L0

4K2Y0
SK1 +

Y

L0
D2

. s15d

Finally, we note for future reference that the second deriva-
tive of the potential evaluated at the equilibrium points is

Vs,u9 ; Ud2V

dX2U
s,u

= ±ÎSK1 +
Y0

L0
D2

− 4K2Y0SX0 − L0

L0
D −

Y0

L0
.

s16d

To describe motion near either one of the equilibrium
statesss,ud, it is convenient to introduce variables

un ; xn − nls,u, n = 1, . . . ,N + 1, s17d

and then to expand the potential energy about equilibrium

Ess,udshunjd = E0
ss,ud + 1

2uTE2
„s,u…u + ¯ , s18d

where

E0
ss,ud = E0sLs,ud =

1

2

Y0

L0
sLs,u − L0d2 + Vs,u, s19d

andE2
ss,ud is the matrix of second derivatives of(7) evaluated

at the appropriate equilibrium point. This leads to equations
of motion linearized about equilibrium

m]t
2u1 = − mg]tu1 − ks2u1 − u2d + h1

m]t
2u2 = − mg]tu2 − ks2u2 − u1 − u3d + h2

¯

m]t
2uN = − mg]tuN − ks2uN − uN−1 − uN+1d + hN

M]t
2uN+1 = − MgM]tuN+1 − ksuN+1 − uNd − V9uN+1 + hN+1,

s20d

where we have introduced a velocity-dependent damping
force, which may be different for the trapped and polymeric
masses. The termshmstd represent a set of independent

Gaussian random forces satisfying the usual conditions

khmstdhnst8dl = 2mgkBTdmndst − t8d

for m, n = 1, . . . ,N + 1

except thatkhN+1stdhN+1st8dl

= 2MgMkBTdst − t8d, s21d

which ensures that the system reaches thermal equilibrium at
temperatureT [10].

It will be convenient in what follows to consider the con-
tinuum limit of the polymer, whereN andk go to infinity and
a, l, andm go to zero in such a way thatL0, L, Y0, and the
polymer mass per unit lengthm;m/ l remain fixed. Taking
this limit in Eqs.(20), we replace the discretely indexed set
hunstdj by the continuous functionusx,td with x=nlP f0,Lg.
This process leads to a damped(longitudinal) wave equation

ms]t
2u + g]tud = Y]x

2u, s22d

along with the boundary conditions

us0,td = 0 andUMS]t
2u + gM]tu +

V9

M
uDU

x=L
= − Y]xuux=L,

s23d

where

Y

L
;

Y0

L0
=

F + Y0

L
, s24d

and the noise terms have been dropped[11].
Equations(22) and (23) are a linear system, and it is

straightforward to do the normal-mode analysis. If the nor-
mal mode is writtenusx,td=hsxdelt, then eigenfunctionshsxd
satisfying the boundary condition atx=0 have the form
sinqx or sinhqx. Corresponding eigenvalues obeyl2+gl
= 7 sY/mdq2 for the sinqx (upper sign) and sinhqx (lower
sign), respectively. The boundary condition atx=L then se-
lects allowedq values(if any). In Sec. III we will need the
(unique) unstable(i.e., positive real) eigenvaluel+ associ-
ated with the unstable equilibrium. It is easy to show that this
eigenvalue can only arise from a solution of the sinhqx type.
It is useful to define

z; qL, vm
2 ;

Y

mL2, vM
2 ;

Y

ML
, s25d

and the dimensionless ratios

a ;
vM

2

vu
2 =

Y

LuVu9u
and b ;

vm
2

vM
2 =

M

mL
. s26d

In terms of these variables, the eigenvalue obeys

l+
2 + gl+ = vm

2z2, s27d

with solution

l+szd = 1
2sÎg2 + 4vm

2z2 − gd = 1
2sÎg2 + 4abvu

2z2 − gd.

s28d

In order to satisfy the boundary condition(23) at x=L, z
must be chosen to solve
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tanhz=
vM

2 z

vu
2 − fl+

2szd + gMl+szdg
. s29d

To find the eigenvaluel+, it is necessary to solve(29) simul-
taneously with(27) or (28). We shall use these equations as
our starting point in Sec. III.

III. STATISTICAL MECHANICS: ESCAPE RATE

The escape rate for problems of the general type(7) was
originally worked out by Langer[9,12]. As noted by Hänggi
et al. [12], the Langer result is just the multidimensional
generalization of the original Kramers rate[1]. Like the
Kramers result, it may be viewed as the result of solving the
full Fokker-Planck equation at the harmonic level in the bar-
rier region and coupling this solution to appropriate bound-
ary conditions inside and outside the trap. In the notation of
our article, Langer’s escape rate can be written

r =
l+

2p
Re−Q/kBT, s30d

in strict parallel with the Kramers result(3), only nowl+ is
the eigenvalue[11] defined by Eqs.(28) and (29)

R; U detE2
ssd

detE2
sudU1/2

, s31d

and

Q = E0
sud − E0

ssd = Vu − Vs +
1

2

Y0

L0
fsLu − L0d2 − sLs − L0d2g

s32d

is the energy difference between the unstable and stable equi-
librium configurations. The ratio of determinants can be
evaluated exactly(see the Appendix)

R= F Vs9 + Y/L

uVu9u − Y/L
G1/2

= Fvs
2 + vM

2

vu
2 − vM

2 G1/2

=
1

vu
Fvs

2 + vM
2

1 − a
G1/2

.

s33d

The final result in the continuum limit is

r =
1

4p
sÎg2 + 4vm

2z2 − gdF Vs9 + Y/L

uVu9u− Y/L
G1/2

e−Q/kBT. s34d

Like the original Kramers result(3), this expression is ex-
pected to fail if the dampingg becomes too small, a limita-
tion we shall discuss further in Sec. V B.

Equation(34) gives the dependence of the escape rate on
the properties of the polymeric link and is our central result.
In what follows, we will explore the implications of this
formula. We begin with a few general remarks. The ratioR
defined by Eq.(33) is a straightforward generalization of
RKr. The additional termsY/L=Y0/L0 reflect the inclusion of
the polymeric terms in the second derivatives of the full po-
tential E0sXd, Eq. (11). Note thatR is mass independent.
Furthermore, the denominator of Eq.(33) is necessarily posi-
tive by virtue of Eq.(12). Thus, in discussing the behavior of
the escape rate, variations ofR are not normally important.

Indeed, for the model potential(13), Eq. (16) shows thatR
=1. The polymeric tension, on the other hand, is important.
Tension is adjusted by increasing or decreasing the offsetX0,
which sets the lengthsLs,u, as illustrated by Eq.(14). These
lengths enter the barrier height(32) both explicitly and im-
plicitly via their effect onVu and Vs. In the normal case,
where the tension does not change significantly between the
stable and unstable equilibrium points, the last term of(32)
can be approximated by a simple product,FsLu−Lsd, of the
tension(9) and the displacement between stable and unstable
equilibrium positions[cf. Eq. (6)]. Of course, as the tension
increases towards the instability point[e.g., Eq.(15)], then
Lu andLs approach one another, as doVu andVs. Thus, the
barrierQ shrinks and, at the same time, the denominator of
(33) approaches zero, i.e.,a→1−. Both these effects increase
the escape rate dramatically[13]. In what follows, we shall
assume that we are not near this instability, so thatQ@kBT
and a, which is always in the interval(12), is not close to
unity. In this region, the exponentiale−Q/kBT, although nu-
merically important, is not particularly interesting. It is the
factor l+ in (30) which incorporates the important interplay
between the massM and the attached polymer. This factor is
the focus of our further analysis below.

The key issue in findingl+szd is solving Eq.(29) for z. By
using Eq.(28), we rewrite(29) in the convenient form

tanhz

z
=

a

Dszd
, s35d

where the denominator is

Dszd = 1 −abz2 +
sg − gMd

2vu
FÎS g

vu
D2

+ 4abz2 −
g

vu
G .

s36d

The left side of(35) has the value unity atz=0 and decreases
monotonically towards zero asz increases. It is easy to verify
that dD/dz,0 (for gM ù0), so Dszd decreases smoothly
from its initially positive value of unity atz=0, passes
through a unique zero at somez0, and continues to negative
values at largez. Thus, the right side of(35) increases mono-
tonically from an initial valuea,1, diverges atz=z0, and
continues at negative values. It follows that(35) always has
a unique solutionz with 0,z,z0, as illustrated in Fig. 2.
Note that, as long asa is not very small, thenz,1, unless
z0!1, in which casez,z0. The caseg=gM is especially
transparent, since(35) takes the simple form

tanhz

z
=

a

1 − abz2 . s37d

It is worth commenting on the scaling of the solutions.
The original variables of Eqs.(27)–(29), vM, vu, vm, g, and
gM, all have the same units. It follows thatl+/vu depends on
four dimensionless ratios of these five quantities, which we
may take, for example, to bea, b, g /vu, and gM /vu. The
dependence of the escape rate on these four variables is in
general nonsimple, as it is necessary to solve Eq.(35) for z
=zsa ,b ,g /vu,gM /vud and then to substitute this into(28).
Only in special cases is there a little simplification. One ex-
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ample is that of Eq.(37), which is independent ofg so that
z=zsa ,bd and the fullg dependence can be read off from
Eq. (28).

Certain important limiting results emerge immediately
from the above framework, which we now discuss.

A. Original Kramers limit, Y0=Y=0 „a=0…

This corresponds to setting the spring constantsk to zero,
so that the polymer has no influence on the escape problem.
Clearly, the original Kramers result(3) and (4) must re-
emerge. TheR factors are simple, sincevM

2 =0, so R
→vs/vu=RKr. The solution forl+ is a bit more complicated,
since vm

2 also vanishes but in such a way that the product
vm

2z2 remains finite. The key is to notice that, under these
conditions, the solution occurs forz@1, so tanhz<1, and
(35) reduces to the conditionDszd=0. A few lines of algebra
show that this condition is equivalent to

Îg2 + 4vm
2z2 − g = ÎgM

2 + 4vm
2 − gM , s38d

so thatl+→l+
Kr, reproducing(4).

B. “Forced”-Kramers limit, m=0 (g fixed)

Taking the mass of the polymer to zero also eliminates the
polymeric drag; however, the tension of the polymer re-
mains, thus converting the original potentialVsXd to the
modified potentialE0sXd, Eq. (11). When this potential is
treated by the Kramers formula, the result is

r forced=
1

4p
„
ÎgM

2 + 4s1 − advu
2 − gM…F Vs9 + Y/L

uVu9u − Y/L
G1/2

e−Q/kBT,

s39d

which differs from(3) and(4) only by the appearance of the
additional second-derivative contributionsY/L in both l+
and theR factor. To show that the same result emerges from
the m→0 limit of Eq. (35) is not hard. The key is to notice
that in this limit the solution forz occurs atz!1, so that
tanhz/z<1, and(35) reduces toDszd=a. The analog of(38)
leads directly to(39).

C. Pure-polymer limit, M =0 (gM fixed)

In this limit, the trapped particle and its associated damp-
ing GM both disappear; the end of the polymer is directly
trapped but has no special mass of its own. The fact thatb
and 1/vu both vanish asM→0 (uVu9u fixed) causes(35) to
simplify to tanhz=az with solutionzsad. The result is

l+
sM=0d = 1

2„
Îg2 + 4vm

2z2sad − g…, s40d

which is similar in form to the Kramers result(4), except that
the polymeric drag replacesgM. In particular, at smalla
(weakY) zsad<1/a, so

l+
sM=0d <

1

2
SÎSLG

Lm
D2

+ 4
uVu9u
aLm

−
LG

Lm
D , s41d

whereG;mg is the polymeric drag per unit length. Equation
(41) looks like(4) except that the particle massM is replaced
by the polymeric massLm, the particle dragGM is replaced
by the net polymeric dragLG, and an extra factora appears
multiplying Lm in the denominator of theuVu9u term, thus
enhancing the effective barrier frequency. The physical rea-
son for this is that, for smallY, only a small fraction of the
overall polymer contributes to the inertial mass associated
with the binding site.

IV. RESULTS

With these limits now under control, we address the cen-
tral issue: How does the polymer dynamics affect the Kram-
ers escape? In this section we explore the effect of polymeric
damping and mass on the escape rate on the basis of the
general results(28) and (35). Our expectations here are not
transparent, since increasing drag(which might be expected
to slow escape) always comes with increasing noise(which
might be expected to speed it up), because of Eq.(21). Ex-
perience with the forced-Kramers limit(and with the original
Kramers problem) does lead us to expect a decrease of es-
cape rate as overall damping is increased.

In this discussion, we focus on the net drag coefficients
GM andLG for the particle and the polymer, respectively. A
central question is the relative effectiveness of these two
sources of frictional drag. In this connection it is convenient
to define a nominal total drag

G0 ; GM + LG, s42d

with GM = s1 − rdG0 and LG = rG0, s43d

so that the dimensionless parameterr s0ørø1d determines
what proportion of the total belongs to the polymer. By vary-
ing r, we can pass smoothly between the forced-Kramers
case(r=0, Sec. III B), where all the drag attaches to the
massM, and the opposite extreme,r=1, where all the drag
belongs to the polymer. When we need to express drag in
dimensionless units, we shall write

g ;
G0

Mvu
=

G0

ÎMuVu9u
or swhenM = 0d

FIG. 2. Schematic graph of the left and right sides of Eq.(35).
Becausea,1 andDszd vanishes atz=z0, there is a unique positive
solutionz=z* in the interval 0,z,z0.
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g8 ; gÎb =
G0

ÎLmuVu9u
. s44d

A. Distribution of drag between the trapped massM
and the polymer

A simple starting point is the casem→0, but now (in
contrast to Sec. III B) with G;gm fixed, so that the poly-
meric mass vanishes but its dissipation persists and can aug-
ment the effect of the direct dragGM. This case will let us
explore, in a particularly simple form the relative effects of
frictional drag associated with the massM and frictional drag
associated with the polymer. In terms of the variables
(42)–(44), Eqs.(28) and (35) for m→0 take the form

l+

vu
=

a

rg
z2sa,r,gd, s45d

wherezsa ,r ,gd is the unique positive solution of

tanhz

z
=

a

1 − s1 − rd
az2

r
− Saz2

rg
D2 . s46d

At r=0, the result reduces to Eq.(39) with gM /vu=g, so
l+/vu goes toÎ1−a and s1−ad /g at g=0 andg→`, re-
spectively. Atr=1, we findl+/vu=Îs1−ad andaz2sad /g at
g=0 andg→`, respectively, wherezsad solves tanhz=az.
Figure 3 plots results for a range of values ofg andr at a
=1/2 (other a values lead to qualitatively similar results).
Note how increasing the overall frictiong lowers the escape
rate, just as for the original Kramers problem(3). At fixed
overall dragg the escape rate is always increased by increas-
ing r, i.e., by shifting drag from the massM to the polymer.
At strong damping the escape rate falls off as 1/g. The co-
efficient of the 1/g behavior decreases monotonically from
az2sad at r=1 to s1−ad at r=0.

Results similar to the above but forM =0, mÞ0 and for
M =mL sb=1d are shown in Figs. 4 and 5, respectively. Gen-

erally speaking, what these calculations show is that poly-
meric friction is an important contributor to the total drag.
Increasing the net drag always decreases the escape rate;
however, drag exerted by the polymer is always less effective
than the same net drag applied directly toM (see more in
Sec. IV C).

B. Effect of the mass ratio

Next, we explore the effect of the mass ratiob−1

=mL /M. To separate this from drag effects, we start with the
caseg=0 sLG=0d, so that all the drag attaches to the trapped
massM. Figure 6(a) shows that increasing the polymeric
mass at fixed drag always decreases the escape rate. Based
on the Kramers problem, we expect mass effects to disappear
at strong damping, and, indeed, a short calculation givesl+
=s1−advu

2/gM =s1−ad uVu9 u /GM, asgM→` for all values of
b−1. A nonzero polymeric friction does not change these
qualitative trends. Figure 6(b) shows the escape rate as a
function of damping wheng=gM sGM =bLGd. We see the
same decrease of escape rate asmL increases. In this case,
the strong damping limit isl+=abz2sadvu

2/gM [zsad solves
tanhz=az] as gM→`. Note that, unlike the previous case,

FIG. 3. The escape-rate prefactorl+/vu as function ofg andr
for m=0 (vanishing polymeric mass) and a=1/2. g measures the
overall drag[see Eqs.(42) and (44)], while r is the fraction of the
overall drag due to the polymer[Eq. (43)]. At strong damping the
escape rate falls off as 1/g. The dependence of certain asymptotic
limits on a is indicated on the plot.

FIG. 4. The escape-rate prefactor as a function ofg8 [Eq. (44)]
and r for M =0 (vanishing particle mass) and a=1/2. Theplot is
similar to Fig. 3 except that the escape ratel+ and the overall drag
G0 have been made dimensionless by factors which do not involve
M. At largeg8 the escape rate falls off as 1/g8. The dependence of
certain asymptotic limits ona is indicated in the plot.

FIG. 5. Escape-rate prefactor as a function ofg and r for M
=Lm sb=1d anda=1/2.
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there is here an explicit dependence onb in the strong-
damping limit, which may be interpreted as a dependence of
the effective friction on the mass ratio(see below).

C. Strong-damping limit

We conclude this section with a general discussion of
strong damping, a situation which occurs commonly in bio-
physical applications and which we shall touch upon again in
Sec. V C. We have seen that strong damping means slow
escape, as in the original Kramers problem. In this limit the
l+

2 terms in both Eqs.(27) and(29) may be dropped, and it is
easy to show generally that

l+

vu
= abz2vu

g
with

tanhz

z
=

a

1 −
gM

g
abz2

. s47d

This is self-consistent, provided thatl+/vu!g /vu in (27)
and l+/vu!1 in (29). Both these conditions are satisfied
wheneverabz2!g /vu. We show below that this condition
can always be satisfied provided the total dragG0;GM
+LG is sufficiently large; thus, Eq.(47) captures the entire
strong-damping limit.

It is convenient to rewrite Eq.(47) in terms of ther ,G0
variables. ThussgM /gdab=asGM /LGd=as1−rd /r, so z

=zsa ,rd in the hyperbolic tangent equation is a function ofa
andr but independent of the mass ratiob. Furthermore

l+ = abz2sa,rd
vu

2

g
=

az2sa,rduVu9u
rG0

. s48d

The result that the escape rate is independent of the masses at
strong damping is not unexpected, since the inertial terms in
the Langevin equations(20) drop out in this limit.

We return now to the issue of self-consistency. Recall that
zs.0d can be small but is bounded above by 1/a. Thus,l+

can be made arbitrarily small, provided only thatrÞ0 (i.e.,
that gÞ0). But, asr→0, z becomes small, the left side of
the hyperbolic tangent equation approaches unity, and we
find az2/r=s1−ad or l+sr=0d=s1−aduVu9u /G0, as we have
already found in Sec. IV A. Thus, ther=0 limit is not sin-
gular, andl+ can always be made small by takingG0 large.

Comparison with the forced-Kramers limitr=0 suggests
that we write the strong-damping result(47) in terms of an
effective drag

l+ ;
s1 − aduVu9u
Gef fsa,rd

, s49d

whereGef f is the drag coefficient that would have to be as-
signed to the massM to simulate the effect of the polymeric
drag in the strong-damping limit. Comparing Eqs.(48) and
(49) leads to the evaluation

Gef f

G0
=

s1 − adr
az2sa,rd

. s50d

This function, which is independent of the mass ratiob, is
plotted in Fig. 7 for a selection ofa values. The fact that this
function decreases from its limiting value of unity atr=0
indicates that the polymeric drag coefficientGL is less effec-
tive thanGM, as might be expected from the fact that, in the

FIG. 6. Escape rate prefactorl+/vu as a function ofg for a
=1/2 andseveral different values ofb−1=Lm /M to illustrate the
effect of increasing polymeric mass. Part(a) treats the case of van-
ishing polymeric dragg=0, while in part (b) we have takeng
=gM [see Eq.(37)]. Note that in all cases increasing the polymeric
mass decreases the escape rate. The dependence of certain
asymptotic limits ona is indicated in the plots.

FIG. 7. Effective drag in the strong-damping limit for various
values ofa. In this limit, the escape-rate prefactorl+ always goes
to zero with increasing total drag as 1/G0 [Eq. (48)] and the mass
terms drop out of the Langevin equations(20). Gef fsrd measures the
effective drag which an isolated massM would need to have in
order to achieve the same escape rate as it does in the presence of
the polymer. The decrease ofGef f asr increases reflects the reduced
effectiveness of the polymeric drag compared to the particle drag.
At a=0 the polymer decouples completely from the escape, so
Gef f=GM =s1−rdG0.
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unstable mode, the polymeric units move with lower velocity
than the particleM. For example, a short calculation for
small r shows thatGef fsrd=G0s1−2r /3+¯ d<GM +LG /3,
so that the effective drag coefficient forM is increased by the
polymeric attachment, as expected, but not by the full
amountLG. At larger values ofr the curves depart from this
simple linear relation, reflecting a more complex dependence
on the ratio GM /LG. As a→0, the function Gef fsrd ap-
proachesG0s1−rd=GM. This is not surprising, sincea=0 is
the Kramers limit(Sec. III A), where the polymer decouples
from the particle, so polymeric drag is completely ineffec-
tive.

V. DISCUSSION AND CONCLUSIONS

A. Comparison to previous theoretical work

Multibody escape problems with a flavor similar to ours
have been addressed by Sebastian and Puthur[14]. These
authors calculated the rate of thermally assisted breakage of
a bond in the middle of a chain by applying multidimen-
sional transition state theory. Transition state theory(TST)
[12] starts from the equilibrium partition function and calcu-
lates the overall outflux from the trap, neglecting recrossing
events back into the trap. It cannot take into account the
effect of friction on the dynamics near the trap, so the role of
friction (and noise) is seen only in setting up the equilibrium
ensemble. Thus, TST typically overestimates the rate, as is
well documented in the literature[12]. The Kramers formal-
ism, on the other hand, computes the net outward flux across
the barrier from the true nonequlibrium phase-space prob-
ability density obtained by solving the Fokker-Planck equa-
tion of the corresponding Langevin equation. In Ref.[14],
the authors try to put back the missing effect of friction by
cooking up a special harmonic bath, because it is known that
the Kramers’ result can be obtained from TST for a single
particle if the particle is quadratically coupled to a harmonic
bath. Then, the simple Kramers formula emerges in some
special limit. The applicability of such a scheme to the multi-
body case has not been proved. In Kramers-Langer formal-
ism, which we use, no suchad hocmodeling is required to
incorporate the effect of friction.

B. Weak-damping limit

The Kramers calculation in the form used here fails in the
weak-damping limit, as was noted in the original article[1].
The reason for this failure is that, in the derivation, it is
assumed that the distribution in the barrier region can be fit
to a stationary, quasiequilibrium distribution inside the well.
When a weakly damped particle undergoes a complete oscil-
lation inside the well and returns to the barrier region with-
out appreciable energy loss, then this assumption breaks
down because there are memory effects which cannot be
ignored. Trajectories which suffer energy loss greater than
kBT do not return to the barrier region. Thus, the criterion
that these memory effects can be neglected is simply that the
energy loss in one cycle of the undamped mechanical motion
should be greater thankBT, which leads to the estimate Eq.
(5) for the range of validity. To describe behavior outside this

range, asgM→0, requires a different approach, usually
based on the notion of energy(or action) diffusion [15].

It seems safe to state that a similar breakdown of the
Langer derivation[9] for the many-particle case studied here
should occur at weak coupling. And, indeed, Eq.(5) presum-
ably provides a first estimate as to where this breakdown
may be expected to occur. Although it would be interesting
to explore this region more fully, such a study is beyond the
scope of the present work. Nevertheless, it is interesting to
note that the conclusion that the escape rate goes to zero at
zero damping most likely does not hold in general for the
many-particle system. The reason is that the polymeric de-
grees of freedom all have energies of orderkBT. Thus, for a
polymer of appreciable length, the average energy of the
system is many timeskBT, whereas, typically, the barrier
heightQ is only a fewkBT. Thus, there is plenty of energy
available for the system to escape over the barrier even when
no noise(and no dissipation) is present. In this limit, it would
seem, escape becomes a problem in(nonlinear) dynamics.

C. Biophysical applicability of the model

Although motivated by the biophysical experiments refer-
enced in Sec. I, the one-dimensional model proposed here is
a significant simplification. Real polymeric linkers have sig-
nificant short-range interactions, which are neglected here.
Furthermore, at sufficiently low tensionsF, Eq. (9), even
without short-range interaction, a long polymer adopts a
random-coil configuration rather than being linear, as as-
sumed here. The model proposed here could only apply in
the so-called “overstretched” regime, when the tension is
strong enough to overcome entropic effects and force the
polymer into a linear configuration. Luckily, this is some-
times the case in experiments[5,7,8]. Even in this situation
there would be some corrections due to the out-of-line mo-
tion, although these may be expected to be small at high
enough tension.

Another problem is the form of the drag coefficients. We
have assumed that each “bead” has its own independent drag
force. This assumption will break down when there are sig-
nificant hydrodynamic interactions between beads. Even in
the strictly linear situation envisaged here, the friction for
individual spherical monomers(for example) will not typi-
cally translate additively into the frictional coefficientG per
unit length of the polymer, since the flow pattern around
individual beads is affected by close spacing, unless the
beads are widely separated. These cooperative effects could
be large for coiled configurations; however, for the linear
case treated here, we expect them to be quantitative rather
than qualitative.

The upshot is that we expect our calculations should be
capable of giving a good account of qualitative issues for
experiments in which the tension is strong enough to pull the
polymer into an extended configuration.

D. Biophysical experiments

The objective of this section is to get an idea of represen-
tative values which the parameters in our theory might take
in a typical experimental system. We imagine a strand of
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DNA of length L0=1 mm with one end attached to a fixed
support and the other end in a kinetic trap. For simplicity we
shall assume that the particle which feels the trapping poten-
tial is not significantly different in mass and drag from the
DNA monomers, so we are in the regimeM =0 and Eq.(40)
applies. Each base pair has a mass of 660 daltons(D), so,
using a linear density of one base pair per 0.34 nm
s,1900 D/nmd, we calculate a mass densitym,3
310−15 kg/m. In order for our one-dimensional model to
have any hope of being applicable(see Sec. V C), it is nec-
essary that the applied tension suffice to stretch out the ther-
mal coil of the relaxed polymer into a nearly linear configu-
ration. Experimentally, this occurs forF,1 pN [16], which
is consistent with the theoretical criterion thatF@kBT/jp
,8310−14 N [17], where jp,53 nm is the persistence
length of DNA[18]. At the other extreme, the onset of DNA
overstretching is observed atF,60 pN [7,8]. In this win-
dow, 1 pN,F,60 pN, the stretching of the DNA backbone
is relatively small, sinceY0,900 pN[7], giving a fractional
extension of no more than 7% by Eq.(9).

To decide whether we are in the overdamped or the un-
derdamped regime, we need to estimate the parameters ap-
pearing in Eq.(40). The largest uncertainty comes from the
factor uVu9u. We estimateuVu,s9 u,DV/ sDxd2, whereDV is the
depth of the trap andDx is a characteristic length scale as-
sociated with the trapping potential. TakingDV,25kBT and
Dx between an angstrom and a nanometer putsuVu9u in the
range 0.1–10 N/m, which givesa,10–4−10–2 from the
definition (12). Finally, we estimate the drag asG,3ph
,10−2 Ns/m2. The fact thata!1 means that we can use Eq.
(41) in place of Eq.(40). The ratio which determines the
degree of overdamping is

g

2vmzsad
,

ag

2vm

=
1

2

G

uVu9u
ÎY0

m
, s51d

which works out to be in the range 0.3(for the angstrom-
range trap) up to 30(for the nanometer-range trap), indicat-
ing moderate to strong damping. The corresponding escape-
rate prefactors range froml+/2p,23108−731011 s−1,
with the lower value for the nanometer-scale trap. To esti-
mate the full escape rate, it is necessary to provide values for
the remaining factors in Eq.(30). Taking R,1 and Q
,20kBT gives an escape rater ,0.4–1500 s−1, with the
lower value for the nanometer-scale trap. These values en-
compass the range of typical bond-rupture experiments[19].
Of course, these numbers are very sensitive to the well depth
Q. Every decrease of 5kBT in well depth corresponds to an
increase in escape rate by a factor of 150. In this connection,
we note that applied tension can decrease the bare well depth
significantly, Eqs.(6) and(32), as emphasized by Evans and
Ritchie [4]: FsLs−Lud,1.5–15kBT for a tension of F
,60 pN and a trap size ofsLu−Lsd,10−10–10−9 m, respec-
tively.

It is instructive to compare some of these numbers with
what we would have found had we approximated the DNA
problem above as a simple forced-Kramers escape, Eqs.(3),
(6), and(39), treating the terminal polymeric unit as the mass
M but neglecting the mass and drag of the remaining poly-

meric units, so that they only enter the problem as the agent
for the applied tensionF. The comparison is, then, between
the correct prefactor(40) and the forced-Kramers approxi-
mation(4). The drag parts of these expressions are the same,
since gM =g,331012 s−1 is the drag per unit mass. The
difference comes in the trap term. The relevant comparison
here is

vm
2z2

vu
2 ,

vm
2

a2vu
2 =

MuVu9u
mY0

, s52d

where we have used the small-a approximation. This ratio
works out for the DNA problem to be in the range 0.03(for
a nanometer trap) to 3 (for an angstrom trap); it enters the
prefactor l+ directly in the strong-damping limit or as a
square root in the weak-damping limit. The upshot is that, for
a nanometer trap, the forced-Kramers estimate of the escape
rate is up to 30 times too fast in the strong-damping limit,
although this discrepancy rapidly becomes smaller as the
trap becomes stiffer.(Note, also, that the fact thatzvm,vu
in this case means thatg /zvm.gM /vu, so the escape-rate
prefactor is further towards the strong-damping regime than
the forced-Kramers approximation would indicate.) At first
sight, it may seem accidental that the combination of factors
on the right side of Eq.(52) is so close to unity, i.e., that the
forced-Kramers approximation is so good. To understand
why, we note thatM /m is a length of order the monomer
diameter;uV9u is comparable toK1 in Eq. (13); and,Y0=ka
from Eq. (9). Thus, if a is comparable to the monomer size,
we find thatvm

2z2/vu
2,K1/k, i.e., the ratio of the trap stiff-

ness to the stiffness of the polymeric links. If these two stiff-
nesses are comparable, which is not unusual, the forced-
Kramers approximation is never too bad(at least, as long as
a is small).

So far, all our estimates have been for DNA, which is a
relatively light biopolymer. How do these numbers change
for heavier polymers? The key ratio(at smalla) is ag /vm

=sG / uVu9udÎsY0/md. Only the square-root factor is dependent
on polymer properties. It turns out that this factor is only
weakly dependent on the polymer mass density. The reason
is that Y0,pR2Ys3Dd, whereYs3Dd is the three-dimensional
modulus andR is the polymeric radius[18]. Furthermore,
m,pR2r, wherer is the density of the bulk polymeric ma-
terial. It follows thatY0/m,Ys3Dd /r. For many biopolymers
Ys3Dd=s0.5–1.5d3109 N/m2 and r,rwater, and the ratio
sY0/md changes by less than a factor of 10 for polymers
ranging in linear mass density by a factor of 105 [18]. There
seems to be a weak trend for heavier polymers to have larger
Ys3Dd, putting them further toward the strong-damping re-
gime.

We are not aware of any extant experiments to which our
model might be directly applied. Nevertheless, there are ex-
periments on the muscle protein titin[5] and polysaccharides
[6] to which our considerations apply, albeit in somewhat
altered form. We take the example of titin[5], which consists
of a linear sequence of immunoglobulin(Ig) domains con-
nected by deformable proline-, glutamate-, valine-, and
lysine-rich (PEVK) segments. The Ig domains are globular;
but, under sufficient tension they unfold into an over-
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stretched configuration by breaking internal hydrogen bonds.
The PEVK segments act like flexible springs. As the overall
tension applied to the polymer is increased beyond the un-
folding threshold, the Ig domains unfold one by one, produc-
ing a sawtooth shape in the observed force-extension curve.
If the applied force were held constant[20], then each indi-
vidual unfolding event would be similar to our model, except
that the breakage point is at some point in the middle of the
polymer segment rather than at one end. Thus, in considering
each event, it is in principle necessary to consider not only
the mass and drag of the breaking Ig domain but the full
mass and drag of all parts of the polymer. The inertial effects
of the mass are likely irrelevant, since the system is probably
in an overdamped regime. Nevertheless, as we have shown
herein, there can still be significant effects on the escape-rate
prefactor arising from drag forces away from the breakage
site.

E. Conclusions

We have shown that the forced-Kramers escape rate can
be significantly altered by the properties of the polymeric
spring. In general, coupling of the dynamical degrees of free-
dom of the polymer to those of the escaping particle leads to
changes in the prefactor of the escape rate(the effective at-
tempt rate) which cannot be captured by simply assigning an
effective mass and drag to the escaping particle. The reason
for this is that the dynamics, itself, controls how much of the
mass and drag of the polymer should be associated with the
escape. In the strong-damping limit, the mass terms disap-
pear from the Langevin equations and an effective drag can
be defined. However, even in this case the effective drag is
not simply additive[see Eq.(50) and Fig. 7]. Increasing the
polymeric mass always decreases the escape rate, as does
increasing the overall drag; however, a shift of drag from the
trapped particle to the polymer increases the escape rate.

Although we have treated the case of a one-dimensional
polymeric spring, it is clear that similar effects will occur
whenever other dynamical degrees of freedom are coupled to
a simple trap.(For example, one might consider a trap
coupled to a fluctuating membrane.) The additional degrees

of freedom act as a kind of structured bath, which interacts
with and modifies the effects of the unstructured thermal
bath. The Langer[9] formalism serves as an elegant tool for
capturing these effects, provided that the damping is not too
weak.
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APPENDIX: CALCULATION OF R IN EQ. (31)

The sN+1d3 sN+1d-dimensional matricesE2
ss,ud in Eq.

(31) have the tridiagonal structure

1
1 − Cs,u − 1 0 . . . 0

− 1 2 − 1 0 ]

0 − 1 2 − 1 ]

] 0 − 1 � − 1

0 . . . 0 − 1 2
2 , sA1d

whereCs,u=−Vs,u9 /k and Vs,u9 was, e.g., given for the cubic
potential in Eq.(16). The determinant of this matrix can be
evaluated directly

detE2
ss,ud = 1 −Cs,usN + 1d. sA2d

In this evaluation, we have used the fact that the determinant
of theN3N-dimensional matrix which arises by striking out
the first row and column of Eq.(A1) is equal tosN+1d. This
matrix occurs in the treatment of phonons in a harmonic
chain ofN masses with the ends held fixed.

The matrixE2 can at most have one negative eigenvalue,
i.e., one unstable mode. The condition for the existence of
such a mode is that detE2,0. This can only be satisfied at
the unstable equilibriumsVu9,0d, when 1, sN+1dCu. This
condition is equivalent by virtue of Eqs.(10) and (24) to
a,1, Eq. (12), which in turn is related to the existence of
the unstable continuum mode discussed after Eq.(35).
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